Kadec norms and Borel sets in a Banach space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Kadec-Klee Property in Banach Lattices

We prove that a Banach lattice X which does not contain the ln ∞uniformly has an equivalent norm which is uniformly Kadec-Klee for a natural topology τ on X. In case the Banach lattice is purely atomic, the topology τ is the coordinatewise convergence topology. 1980 Mathematics Subject Classification: Primary 46B03, 46B42.

متن کامل

Kadec norms on spaces of continuous functions

We study the existence of pointwise Kadec renormings for Banach spaces of the form C(K). We show in particular that such a renorming exists when K is any product of compact linearly ordered spaces, extending the result for a single factor due to Haydon, Jayne, Namioka and Rogers. We show that if C(K1) has a pointwise Kadec renorming and K2 belongs to the class of spaces obtained by closing the ...

متن کامل

On Semi-Uniform Kadec-Klee Banach Spaces

and Applied Analysis 3 We now introduce a property lying between U-space and semi-KK. Definition 1.8. We say that a Banach space X is semi-uniform Kadec-Klee if for every ε > 0 there exists a δ > 0 such that semi-UKK : {xn} ⊂ SX xn ⇀ x 〈 xn − x, fn 〉 ≥ ε, for some {fn } ⊂ SX∗ satisfying fn ∈ ∇xn ∀n ⎫ ⎪ ⎪⎬ ⎪ ⎪⎭ ⇒ ‖x‖ ≤ 1 − δ. 1.10 In this paper, we prove that semi-UKK property is a nice generali...

متن کامل

Antiproximinal Norms in Banach Spaces

We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1999

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-136-1-1-16